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Abstract Real-time identification and tracking of the joint

positions of people can be achieved with off-the-shelf

sensing technologies such as the Microsoft Kinect, or other

camera-based systems with computer vision. However,

tracking is constrained by the system’s field of view of

people. When a person is occluded from the camera view,

their position can no longer be followed. Out of Sight

addresses the occlusion problem in depth-sensing tracking

systems. Our new tracking infrastructure provides human

skeleton joint positions during occlusion, by combining the

field of view of multiple Kinects using geometric calibra-

tion and affine transformation. We verified the technique’s

accuracy through a system evaluation consisting of 20

participants in stationary position and in motion, with two

Kinects positioned parallel, 45�, and 90� apart. Results

show that our skeleton matching is accurate to within 16.1

cm (s.d. = 5.8 cm), which is within a person’s personal

space. In a realistic scenario study, groups of two people

quickly occlude each other, and occlusion is resolved for

85% of the participants. A RESTful API was developed to

allow distributed access of occlusion-free skeleton joint

positions. As a further contribution, we provide the system

as open source.
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1 Introduction

In research and development, the use of in-air finger, hand,

arm position, or other body posture for gesture control is

now common for single or multimodal interaction, with

thousands of papers published employing such techniques.

Automated human body tracking is the ability to identify

and follow individuals in an environment, usually through

human pose estimation and spatial recognition software.

Inexpensive depth-sensing technologies, such as the time-

of-flight camera within the Microsoft Kinect, have enabled

the human body to be segmented, and subsequently

tracked, in systems such as pedestrian behavior analy-

sis [1], human–robot interactions [2], gait recognition [3],

and cross-device interactions [4]. It’s common for

researchers and developers to leverage such noninvasive

tracking infrastructure (e.g., through the Microsoft Kinect

Software Development Kit1) to support gesture control and

novel forms of human–computer interaction (HCI).

1.1 Problem

Interactive systems which depend on people and body

feature detection can suffer when the tracked target is

occluded by other people or objects from the system’s field

of view. In particular, the occlusion problem (demonstrated

in Fig. 1) is common in real deployment of single, front-

view camera systems. During occlusion, the system cannot

locate a users’ body joint positions. Out of Sight resolves

this problem. For HCI, resolving the occlusion problem

will enable interactive systems to consistently track spatial
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(e.g., position) or physiological (e.g., facial features)

information of the users in spaces, thus improving user

interactions which rely on, for example, face tracking or

gesture recognition. Without knowledge of the users’

position over time, when occlusions occur naturally from

interaction, depth-sensing systems currently have the fol-

lowing limitations: unrealistic contrived scenarios in

applications, limited natural movements imposed by users’

knowledge of the system limits, and short duration of

interaction before interruption due to occlusion.

1.2 Out of sight toolkit

Out of Sight is a toolkit that resolves the occlusion problem

in depth-sensing systems. Specifically, it extends the

existing Kinect tracking infrastructure by providing users’

joint positions during occlusion. Leveraging the larger,

extended field of view comprised of multiple Kinects, the

system can sense the tracking area from different angles,

hence fills any missing data during occlusion from the

additional Kinects. The toolkit provides occlusion-free

skeleton positions from any Kinect’s field of view. Our

approach builds on Wei et al.’s [5] work on the calibration

of a single skeleton in a two-Kinect system. We adapt the

technique to track multiple people, by transforming the

skeletons in different fields of view closer to their respec-

tive camera (a common coordinate system), then matching

the skeletons in this new coordinate system across cameras.

This approach can be applied to other depth-sensing

infrastructure which provides human skeleton joint data, as

the technique only relies on geometric transformations of

the joint positions. Wei et al. did not consider the occlusion

problem, and in this paper, we also extend their evaluation

and provide a web-based API for the real-time occlusion-

free skeleton stream.

There are several Kinect-based interactive systems and

interaction techniques that could be extended with the Out

of Sight API. Further research can use the API to track the

positions of multiple people in an occluded environment,

thus resolving existing system constraints and enabling

new capabilities. Research in kinesics is currently limited

to two-person interactions where users are strictly standing

next to each other [6]. Location-aware wearable haptics [7]

require the system to robustly track users’ positions;

therefore, occlusion can cause interruptions to the inter-

action. Sound localization [8] can also be affected by

occlusion, but the use of auxiliary Kinects could enable

new types of Kinect-based sound localization solutions. In

collaborative environments, such as the attention- and

proximity-aware multiuser interface developed by Dostal

et al. [9], our occlusion-free joint data could help the sys-

tem recognize otherwise absent gestures. Moreover, the

API could improve ad hoc proxemic [10] and cross-device

interactions [11], where interactions would no longer be

limited to within the visible field of view of a single

camera. In addition, the API would resolve much of the

occlusion which occurs during daily human activities, for

example gesturing, moving, or dancing in multiplayer

gaming scenarios.

1.3 Contributions

Overall, our paper makes the following contributions:

1. A toolkit (using a web-based API) for tracking

multiple people’s joint positions in an interaction

space with occlusion.

2. A system evaluation validating the accuracy of both

current and previous work on tracking human joint

positions with multiple depth-sensing cameras. Our

evaluation also includes new occlusion scenarios (e.g.,

in one’s personal space [12]).

3. The tested toolkit and API are open sourced, enabling

future researchers to develop tools or interaction

techniques that are unaffected by occlusion.

The open source code is available online at https://github.

com/cjw-charleswu/Kinect2Kit and https://github.com/

cjw-charleswu/GestureTracker.

2 Related work

Human detection in images is a widely studied area in the

field of computer vision, where many challenging datasets

have been created [13–17]. The state-of-the art approaches

can reliably detect pedestrians in different poses and

appearances given good imaging conditions [17], where

common features are derived from gradient orientations

Fig. 1 Examples of where occlusion arises in a single-camera system,

showing (a) almost complete occlusion and (b) partial occlusion. In
such scenarios, the person in the foreground has their skeleton

detected, while the person being occluded is ignored
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and color channels, along with discrete cosine trans-

forms [18]. The best results are achieved with one of the

three machine learning algorithms: deformable part mod-

els, convolutional neural networks, and decision for-

ests [18]. However, accuracy degrades with decreasing size

of input images and the presence of occlusion [17].

Previous research shows that individuals can be reliably

tracked in complex environments including occlusion, but

current systems do not provide spatial information about

people lost in occlusion, as they are blocked from the

camera’s line of sight. Tang et al. [19] train a deformable

parts model detector to recognize patterns of partial

occlusion for pairs of people. Liu et al. [20] and Luber

et al. [21] track positions of people before and after

occlusion, although not during occlusion, using point

ensemble images and a person detector combined with an

online-learned model, respectively, from RGB-D data.

Luber et al. also used multiple Kinects with an extended

field of view. These systems do not track body joint posi-

tions during occlusion, as shown here. Our approach to the

occlusion problem is inspired by the idea of extending the

field of view with multiple depth-sensing cameras, i.e.,

multiple Kinect sensors. The use of multiple cameras for

tracking people has been demonstrated in previous research

with overlapping [22–24] and non-overlapping [25, 26]

fields of view. A similar work is [27] in which multiple

Kinect depth streams are combined, whereas we merge the

skeleton streams while accounting for occlusion, arguably

more useful for rapid design and prototyping of HCI

systems.

Kinect skeleton tracking has been used in many inter-

active systems [9–11, 28, 29], but the occlusion problem

remains unresolved. These systems require most of the user

to remain unobstructed from the only camera’s field of

view, hence limiting the type of interactions that would

otherwise normally occur. Systems such as [4, 30] reduce

occlusion by employing a top–down Kinect. However,

recognizing complex gestures and interaction patterns from

a top–down Kinect is difficult, because self-occlusion

increases the challenge of joint localization. Furthermore,

commodity depth-sensing cameras, such as the Kinect, do

not provide the skeleton stream when placed in a top–down

position. None of these systems provide the skeleton view

of people during occlusion.

Out of Sight resolves occlusion by merging the skeleton

stream of multiple Kinects, based on the geometric cali-

bration and transformation procedure employed by Wei

et al. [5] and Caon et al. [28]. However, this prior work did

not address the occlusion problem, and their system eval-

uation was with only one person, whereas we extended the

study to two people. Moreover, Caon et al. did not evaluate

the accuracy of the joint position positions after transfor-

mation (in the presence of occlusion), as we did here. Wei

et al. evaluated the technique’s accuracy using contrived,

occlusion-free scenarios, namely stationary position and

stepping motions. We investigate the tracking accuracy for

more complex scenarios including walking around, going

around a static obstacle, and being occluded by another

person. Furthermore, we open source our novel Out of

Sight toolkit and API.

3 Methodology

The Out of Sight toolkit locates occlusion-free body joint

positions in three stages: (1) a sensing application, (2) a

calibration procedure, and (3) a tracking module. Firstly,

the sensing application processes incoming skeleton

streams from the Kinects. Then, the application initializes

calibration. For each skeleton in each field of view, it

calculates their initial center position as well as the angle

between their body and the camera. After calibration, the

skeleton joints from every field of view are transformed to

a common world coordinate system, allowing for a com-

parison between the skeletons. The world coordinate sys-

tem is the same as the Kinect camera space, except that the

skeletons during calibration are pulled closer to the camera.

The skeletons of a person from different fields of view

are matched by their spatial proximity, and then tracked, in

this coordinate system. Lastly, the system transforms the

joint positions of the matched, averaged skeleton to the

selected field of view by reversing the transformation.

Figure 2 shows an example where a person’s skeleton

appears in multiple depth-sensing cameras’ field of view,

but we can transform their skeletons from multiple views to

a single field of view, thus enabling a new occlusion-aware

tracking system, in particular when the view (i.e., visibil-

ity) of the person is occluded in one camera (Fig. 3).

The system (Fig. 4) consists of a server running the

tracking application and a number of client programs

installed on each computer running a Kinect v2 sensor.2

The clients send serialized Kinect BodyFrames (using the

Kinect v2 SDK) to the server via HTTP POST. The server

performs the initial calibration and provides a RESTful

API for accessing occlusion-free body joint positions. A

toolkit was developed to demonstrate the system and the

API.

3.1 Calibration

We briefly describe the calibration and transformation

procedure presented by Wei et al. [5] (The complete

mathematical formulas are presented in their paper). The

2 There is currently a maximum of one Kinect per computer when

using the Microsoft Kinect v2 SDK.
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system assumes that all users are visible from all Kinects

during calibration. The first 120 frames are used in cali-

bration. For every detected skeleton in each field of view,

their initial center position and relative body angle to the

Kinect are calculated. The skeleton’s center position is

defined as the average of all 3D joint positions over all

calibration frames. The angle between the skeleton and the

Kinect is defined as the average angle of rotation between

two vectors: the vector connecting the left and right

shoulders and the perpendicular vector from the origin of

the camera.

3.2 Transformation

After obtaining its initial center position and rotation angle,

we can translate and rotate the skeleton to the world

coordinate system, where the new coordinate system is

calibrated to the origin of the Kinect device. Firstly, the

joint positions are translated by the initial body center

position to the origin of the camera. Secondly, the new

joint coordinates are rotated about the y-axis by the initial

body angle. After calibration and the initial transformation,

the skeleton is parallel to the Kinect in the world coordi-

nate system. The transformation process is applied to every

skeleton in each field of view. These calculations require

only the 3D body joint positions as input; hence, the

approach is applicable to any depth-sensing tracking

infrastructure (i.e., other than the Kinect) with human pose

estimation (joint data).

3.3 Tracking

The initial tracking result contains the spatial information

(i.e., the original Kinect coordinates and the world coor-

dinates) of all currently tracked people, where each person

is represented by skeletons from all fields of view. The

tracking module matches skeletons across all fields of view

by their spatial proximity in the world coordinate system.

This extends the methodology initially proposed by Wei

et al., as only one person was tracked [5]. The average

skeleton (calculated using only the tracked joints) in the

world coordinate system is the view-dependent represen-

tation of a person. Assuming that all people were visible to

all cameras during calibration, we can reverse the Kinect-

to-world coordinate transformation (i.e., inversely rotating

by the initial body angle and then translating by the body

center position) to obtain joint positions back in the Kinect

coordinate system. The inverse transformation enables

real-time tracking of people’s position through occlusion in

different Kinects’ field of view. A person’s body joint

positions are updated in both coordinate systems, either

calculated from the skeleton feeds or through transforma-

tion. During occlusion, the tracking module provides the

joint data using only cameras that have clear sight of them.

3.4 Out of sight API

A RESTful3 API was developed to provide the automated

calibration and tracking as a distributed service to other

applications. With this API, custom application retrieves

the latest calibration progress as well as the tracking result

via HTTP POST. An example of the tracking data in JSON

format is shown in Fig. 5.

Fig. 2 Combined view of a person’s skeleton from two different

Kinects (right), and the transformed skeletons in the field of view of

the front (left) and 45� (middle) Kinect. In particular, the averaged

skeleton is colored in white

Fig. 3 Out of Sight merges two Kinects’ fields of view (left and right)

and provides persistent tracking of the occluded person’s joint

positions in the initially limited field of view (center). In the central

image, the toolkit visualizes two people’s skeleton (one occluded and

the other one unoccluded), by accessing the merged skeleton stream

via the RESTful API

Fig. 4 Out of Sight system architecture

3 A definition of REST is given in Fielding and Taylor [31].
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4 System evaluation

We designed a system evaluation to verify the accuracy

of our approach. We are interested in whether such

accuracy would be acceptable for HCI research and

development, in both normal and occlusion settings. We

define accuracy as the average Euclidean distance, with

respect to the 3D joint positions, between the skeletons of

a person from different fields of view. During tracking,

Out of Sight extracts multiple skeletons of a person,

including a skeleton from the current field of view (zero

transformation) and skeletons from other fields of view

(some transformation following our approach). We argue

that the smaller the difference between the skeleton

positions, the more accurate our approach. During the

evaluation, the system logged each participant’s joint

positions after transforming the skeletons to the same

(front) field of view.

Our participants were required to perform five different

tasks: standing, stepping, walking, going around an

obstacle, and occluding another participant, as shown in

Fig. 6. In each individual experiment, there were 20

multinational University students and staff, and whose age

ranges from 18 to 35 years old. We included participants

with a wide range of heights, weights, and of different

genders. The two Kinects were placed at one of three pre-

defined locations, either they were parallel, 45� or 90�

apart. One Kinect was always placed at the front position.

The location of the devices and participant movements

were labeled clearly on the tracking area throughout the

evaluation. Participant movements were restricted to a

space of 192.5 cm in width and 187 cm in length. Our

evaluation captures the error in skeleton joint transfor-

mation using a richer set of scenarios than previously

studied [5].

4.1 Stationary

In the first study, participants were required to remain

stationary for ten seconds in the center of the tracking area

(Fig. 6a). The study was done with all three Kinect con-

figurations (parallel, 45� apart and 90� apart).

4.2 Stepping

To allow for comparison with the results of Wei et al., the

second study required the participants to move in the same

way. This included basic movements such as moving for-

ward, backward, left, and right (Fig. 6b). The study was

done with all three Kinect configurations.

4.3 Walking

The third study required the participants to walk around the

perimeter of the tracking area, and then walk diagonally to

each of the four corners (Fig. 6c). As with the previous two

tasks, the walking task was performed with all three Kinect

configurations. This more complex scenario (tracking and

transformation could be less accurate) enabled a more

realistic testing of the method than seen previously.

4.4 Obstacle

Participants also walked around a large obstacle, which in

our case was a 0:82m� 2:10m freestanding poster. The

obstacle separated the fields of view of two Kinects at 90�

apart (Fig. 6d). The participant started on one side of the

obstacle where they were visible to both Kinects. As the

participant walked around the obstacle from behind, the

Kinect that was initially looking from the side of the par-

ticipant slowly loses sight of the person. When the par-

ticipant was on the other side of the obstacle, only the

front-facing Kinect was able to see the person. If Out of

Sight worked as intended, the study should demonstrate

that the system could still track the person despite one of

the Kinects, either temporarily or permanently, loses sight

of the person.

4.5 Occlusion

Our proposed approach was also tested against an occlu-

sion scenario, with two Kinects at 45� apart. The developed
toolkit and API were validated by running a user study

involving 10 participants, with two participants tested at

once. The participants stood next to each other, the cali-

bration process was initiated, the matched average skele-

tons were tracked and displayed, and then one person

obstructed the other in one field of view (Fig. 6e). It was

visually noted if the occluded skeleton was successfully

Fig. 5 Occlusion-free skeleton joint positions data sample
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located and tracked, and then this experiment was repeated

for the other participant.

4.6 Accuracy

We calculate the average Euclidean distance between a

person’s multiple skeletons (joints) as captured by the Out

of Sight system. This value represents the amount of error

from applying the proposed skeleton mapping approach.

The distance values are calibrated zero at the center of the

Kinect camera space, and we calculate the Dx, Dy, Dz, Dd
(with units of centimeters). Dd is the average 3D distance

between skeletons of the same person from different

Kinects’ fields of view. Dx, Dy, and Dz are the average

distance in the x-, y-, and z-components, respectively.

5 Results

5.1 Skeleton mapping

The overall results are summarized in Table 1 and visual-

ized in Fig. 7a. The best accuracy, or the smallest average

distance between skeletons, is found with parallel Kinects

in the stationary scenario ( �Dd = 3.52 cm, s.d. = 0.84 cm).

The worst accuracy is found with Kinects placed at 90�

from each other in the walking scenario ( �Dd = 32.38 cm,

s.d. = 13.87 cm). In addition, the smallest and largest

skeleton joint distances are found with HipRight ( �Dd =

13.45 cm, s.d. = 5.77 cm) and ThumbLeft ( �Dd = 20.00 cm,

s.d. = 5.95 cm), respectively (Fig. 7b).

Figure 8a shows the effect of task complexity on the

average skeleton distance, in each of the stationary, step-

ping, and walking tasks. The values are averaged across all

three Kinect positions. The average skeleton distance is

smallest in the stationary task ( �Dd = 6.75 cm, s.d. = 2.27

cm) and largest in the walking task ( �Dd = 19.27 cm, s.d. =

7.32 cm). The average skeleton distance in these three

scenarios is 16.08 cm (s.d. = 5.84 cm).

Figure 8b shows the effect of Kinect placement on the

average skeleton distance. The values are averaged over

the stationary, stepping, and walking tasks. The average

skeleton distance is smallest in the parallel Kinect position

( �Dd = 8.13 cm, s.d. = 2.58 cm) and largest in the 90�

position ( �Dd = 27.76 cm, s.d. = 12.44 cm).

5.2 One-person obstacle

The system is able to consistently track the person when

they walk around an obstacle (Fig. 6d), successfully

tracking them in 100% of cases while the person disappears

from the field of view of one of the Kinects.

5.3 Two-person occlusion

When testing the API and the toolkit with 10 participants

for tracking occluded people, the skeletons were tracked

correctly when there is no occlusion, and in 17 out of 20

(85% accuracy) occlusion cases, the skeletons were tracked

consistently. An example of a person tracked during

occlusion is shown in Fig. 3.

6 Discussion

For each of the primary tasks (stationary, stepping, and

walking), this discussion addresses how the average

skeleton and joint distances change with different Kinect

positions. It is worth noting that Wei et al. [5] only studied

stationary and stepping tasks, with near parallel and 45�

apart Kinects. We compare results with those in Wei

et al.’s study where appropriate.

(a) Stationary (b) Stepping (c) Walking (d) Obstacle (e) Occlusion

Fig. 6 Participant movements instructions in the system evaluation (from left to right) of stationary, stepping, walking, obstacle, and occlusion.

The number(s) in yellow circles is the order of a sub-action in a task
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Table 1 Overall system

evaluation results, including the

average Dx, Dy, Dz and Dd, or
accuracy, where appropriate.

All values are rounded up to two

decimal places

Kinects and evaluation �Dx (cm) �Dy (cm) �Dz (cm) �Dd (cm)

Parallel, stationary 1:84� 1:03 1:28� 0:49 2.08 ± 0.89 3.52 ± 1.33

Parallel, stepping 4:48� 0:53 2:13� 0:32 3.58 ± 0.95 6.87 ± 0.90

Parallel, walking 5:76� 0:97 3:17� 0:57 6.04 ± 0.95 10.17 ± 1.64

45�, stationary 3:38� 1:52 3:59� 1:50 3.17 ± 1.45 6.95 ± 2.67

45�, stepping 8:18� 0:70 4:11� 0:85 6.47 ± 1.77 12.80 ± 1.92

45�, walking 10:18� 1:16 5:78� 0:70 9.94 ± 1.69 17.67 ± 2.37

90�, stationary 7:30� 2:94 4:35� 2:15 5.19 ± 1.84 11.39 ± 4.45

90�, stepping 16:67� 1:69 5:20� 2:07 13.83 ± 1.95 25.13 ± 3.46

90�, walking 21:02� 1:73 5:47� 0:96 19.03 ± 2.07 32.38 ± 3.38

90�, obstacle 100% accuracy

Occlusion 85% accuracy
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6.1 Stationary

The stationary task shows the best results when the Kinects

are parallel to each other and worst when they are at fur-

thest (90�) apart. All measures of distances follow the same

trend, from Dx to Dz and Dd (Table 1). Skeleton distances

in the stationary task increase with increasing angle

between the Kinects.

The Dy values are the smallest both when the Kinects

are parallel to each other and when they are 90� apart. The
Dy value in the stepping task is only slightly higher than its

Dx and Dz values (0.21 cm and 0.42 higher, respectively).

We observe that in general the skeleton transformation

makes the least errors in the coordinate transformation of

the y-axis, since we rotate the skeletons around the y-axis.

Furthermore, the heights of both Kinects in the evaluation

were fixed, and the participants did not move along the y-

axis.

Wei et al. [5] reported lower values compared to those

found in the current work. In their stationary task (average

difference before movement) with parallel (4:25�) apart

Kinects, the skeleton distances in the Dx, Dy, and Dz were
0.00, 1.00, and 2.00 cm, respectively. They did not report

Dd values. A calculation using the Pythagoras’ theorem

shows that the corresponding Dd would have been 2.24 cm,

which is also lower than our 3.52 cm (Table 1). In their

same task with 45� (44:37�) apart Kinects, the skeleton

distances in the Dx, Dy, and Dz were 1.00, 1.00, and 1.50

cm, respectively. The calculated Dd was 2.06 cm which is

also lower than the 6.95 cm reported here. The differences

could be accounted by the larger participant pool found in

more realistic environments.

6.2 Stepping

Overall, the skeleton distances in the stepping task are

higher compared to those in the stationary task; for every

Kinect position tested, see comparison of averages in

Fig. 8a. The increase in skeleton distances is expected,

because the task requires the participants to take steps

both closer and away from the Kinect sensor, which

causes the tracking system to produce larger differences

between the skeletons because of transformation. Simi-

larly to the stationary task, the stepping task also shows

best results when the Kinects are parallel to each other

and worst when they are 90� apart. All measures of dis-

tances follow the same trend, from Dx to Dz and Dd
(Table 1). For all Kinect positions, the Dx values are the

highest, then Dz and Dy. The skeleton distances also

increase with increasing angle between Kinects. This

shows that the tracking accuracy of Out of Sight is

affected by both increasing angles between Kinects and

increasing complex human activities.

Wei et al. [5] also reported lower values. In their step-

ping task (average difference after movement) with parallel

(4:25� apart) Kinects, the skeleton distances in the Dx, Dy,
and Dz were 2.00, 1.28, and 3.78 cm, respectively. The

calculated Dd was 4.46 cm which is lower than the 6.87 cm

(Table 1) found in the current study. In their same task

with 45� (44:37�) apart Kinects, the skeleton distances in

the Dx, Dy, and Dz were 4.28, 1.64, and 5.28 cm, respec-

tively. The calculated Dd was 6.99 cm which is lower than

the 12.80 cm found in the current work but in accordance

with the differences reported.

6.3 Walking

The skeleton distances in the walking task are also higher

compared to those in the stationary and stepping tasks; for

every type of Kinect configuration, see Table 1 and the

averages in Fig. 8a. Since walking movements are even

larger than stepping and stationary movements, the error in

the walking task will be higher compared to the other two

tasks. On the other hand, the skeleton transformation also

works best with parallel Kinects, and the average skeleton

joint distance from different fields of view increases with

larger angles (Table 1). Likewise, when the Kinects are 45�

and 90� apart, the Dx values are still the highest, followed

by Dz and Dy.
The average and standard deviation of Dy are almost

invariant to changes from the stationary to the walking task

(Fig. 7a and Fig. 8a, b). The standard deviation of Dy is the
lowest compared to that of Dx or Dz in all the tasks dis-

cussed so far (stationary, stepping, and walking), with all

different Kinect positions (parallel, 45�, and 90� apart

Kinects), except in the stationary task with 45� and 90�

apart Kinects. The average skeleton distance over all tasks

and Kinect positions is smallest in the Dy component (4.11

cm, s.d. = 1.36 cm), compared to both Dx (10.04 cm, s.d. =

4.12 cm) and Dz (9.01 cm, s.d. = 3.35 cm). This finding

supports the aforementioned argument that Dy is steady

throughout the tracking process, regardless of tasks and

Kinect positions.

Wei et al. [5] did not run their experiments with a

walking task as described in the current work. There is not

other similar work in the literature. These results show new

accuracy measurements for multi-Kinect tracking systems

in a more realistic scenario.

6.4 Scenario and position comparison

The stationary, stepping, and walking tasks can be ordered

on a spectrum of complexity, where the former requires

zero movement, and the latter requires continuous move-

ment. The evaluation so far shows that skeleton distances

increase with increasing task complexity (Fig. 8a). The
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correlation can be attributed to increasing joint movements

and turning of the shoulders. There is little variation in the

accuracy of the technique between the distance dimensions

across different joints, as shown in Fig. 7b. Therefore,

skeleton transformation can be applied to all joints with the

same confidence of joint positioning.

When testing the correlation of the angle to distance

accuracy, a high correlation for Dd of 0.985 shows that the

larger the angle, the larger the distance between estimated

skeletons, which is also visible in Fig. 8b. The angle

between Kinects is related to the degree of rotation used in

the transformation of multiple skeletons. A larger angle

between the Kinects means that the skeletons will be

rotated more, hence producing larger coordinate

differences.

When varying only either the task complexity or the

angle between the Kinects, the results show similar trends

(Fig. 8a, b). In short, the distance between two computed

skeleton joints increases with either a more complex task or

a larger angle between multiple Kinects. The average dis-

tance Dd is smallest in the stationary task with parallel

Kinects (3.52 cm), and it is largest in the walking task with

90� apart Kinects (32.38 cm). The overall average across

all cases of task complexity and Kinect placement is 16.08

cm (s.d. = 5.84 cm). We believe interactive systems can

make use of our Out of Sight tracking infrastructure within

this error. This important finding shows the limits of how

close people can be and still be distinct from one another

when using this technique with multiple Kinects, both to

extend coverage and to overcome occlusion.

The least accurate positioning of the Kinect was when

the Kinects are 90� apart, where the average overall sce-

nario was shown to have a Dd mean distance of 27.76 cm

(Fig. 8b). This boundary is still within the personal space,

or the space where only one person is most likely to

occupy, where close personal space can be defined as

within 45 cm from the person; for a discussion of personal

space, see [12]. The results therefore show preliminary

success in tracking people using transformed 3D skeleton

joint positions.

6.5 Tracking behind an obstacle

The obstacle task demonstrates that the tracking system can

acquire, as complete as possible, joint coordinates for the

same person from multiple Kinects when the person is

occluded in one of the fields of view. Specifically, Out of

Sight constructs an average skeleton from detected skele-

tons in all available fields of view. This has implications in

scenarios where only one of multiple depth-sensing cam-

eras has a clear view of the target. A use case would be a

two-player interactive game, where the players are pro-

vided with feedback based on the other player’s position

behind an obstacle, such as a wall. Another example would

be a group of robots collectively searching for a person

with particular appearance features in a large, occluded

environment. The current system shows that this approach

can reconstruct a person’s average skeleton when they are

occluded and when they reappear from occlusion.

6.6 Tracking during occlusion

The Out of Sight RESTful API was validated with a toolkit

usage scenario of two users standing side by side and then

one user obstructing another, and vice versa. The API was

shown to provide the matched skeletons for both scenarios

when the participants were visible to both Kinects, and it

also worked in 85% of the binary tests where one person

obstructed the other person in one field of view. An

example of the toolkit is shown in Fig. 3. This shows that

the API can be used to track people behind obstructing

objects, allowing future integration of occlusion-free

skeleton stream into custom applications.

7 Limitations and future work

The tracking accuracy was tested with Kinects placed at the

same height and tilting angle. Further evaluation could

investigate whether the results are still within a person’s

personal space with more varied heights and tilting angles.

Furthermore, evaluation could also be carried out in more

realistic, cluttered settings such as office spaces. We only

used two Kinects and invited at most two participants at

once. However, real-world environments are usually more

chaotic, often consisting of groups of more than two peo-

ple. The tracking system should demonstrate the same

accuracy and speed with more people. Current work also

lacks insights about how additional Kinects would affect

performance. In theory, our approach is applicable to other

depth-sensing systems with support for human joint data,

but it is not tested with other alternatives to the Kinect. An

important future work would be a comparison of various

techniques of tracking people during occlusion using

multiple depth-sensing cameras, for example a comparison

of speed and accuracy trade-offs or limitations. Other

techniques could include an alternative calibration method

using triangulation of static objects or features in envi-

ronments, a combination of depth fusion and human pose

estimation, or a system using top–down (bird’s-eye view)

cameras. Different techniques could have different usage

scenarios such as ad hoc (calibration-free) tracking of

people. In addition, we ignored the cost of running multiple

Kinects in interactive spaces. A practical extension would

be to derive a cost function which finds an optimal place-

ment of depth-sensing cameras in a known environment, in
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which the effective size of the field of view is maximized.

Given the constraint of the Kinect v2 SDK, the current

system can only track up to six people, whereas previous

research had demonstrated that it is possible to track more

than six people with a single [32] and multiple [21]

Kinects.

8 Conclusion

We have presented Out of Sight, an occlusion-aware

skeleton tracking system using multiple Kinects. During

calibration, it transforms each detected skeleton into a

common coordinate system by translating and rotating the

joints toward the corresponding Kinect sensor. Skeletons of

the same person from different fields of view are matched

by their spatial proximity in the new coordinate system,

and their joint positions are subsequently updated during

tracking. The system can also perform reverse transfor-

mation to estimate the person’s joint positions in a partic-

ular field of view. Furthermore, it resolves occlusion in one

depth-sensing camera, for example when users are

obstructed by others or objects, by averaging joint positions

from other cameras.

A system evaluation measured the tracking accuracy as

the average distance between multiple skeletons of a per-

son from different fields of view after transformation,

discussed in terms of the Dx, Dy, Dz, and Dd values (in

centimeters). Results show that the average skeleton (and

joint) distance increases with both the complexity of the

task (from standing to walking) and the angle between

Kinects (from parallel to 90�). Even though we found lower
accuracy in similar scenarios compared to previous work,

our average skeleton distance of 16.08 cm is still within the

region of personal space. It was also demonstrated that the

current system can track the joint positions of multiple

people during obstruction and occlusion.

Tracking people through occlusion enables interactive

systems to leverage otherwise hidden information and to

deliver purposeful actions, for example showing users

information that is currently obstructed in their (and cam-

era’s) line of sight. Our work creates opportunities for

custom applications to leverage occlusion-free human joint

positions using a multi-Kinect tracking infrastructure. To

make it easier for future developers, we also open sourced

the toolkit and API.
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