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ABSTRACT  
Real-time tracking of people's location, orientation and ac-
tivities is increasingly important for designing novel ubiqui-
tous computing applications. Top-view camera-based track-
ing avoids occlusion when tracking people while collaborat-
ing, but often requires complex tracking systems and ad-
vanced computer vision algorithms. To facilitate the proto-
typing of ubiquitous computing applications for interactive 
spaces, we developed EagleSense, a real-time human posture 
and activity recognition system with a single top-view depth-
sensing camera. We contribute our novel algorithm and pro-
cessing pipeline, including details for calculating silhouette-
extremities features and applying gradient tree boosting clas-
sifiers for activity recognition optimized for top-view depth 
sensing. EagleSense provides easy access to the real-time 
tracking data and includes tools for facilitating the integra-
tion into custom applications. We report the results of a tech-
nical evaluation with 12 participants and demonstrate the ca-
pabilities of EagleSense with application case studies. 
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INTRODUCTION  
Applications in ubiquitous computing ecologies increasingly 
leverage information about the location of people and de-
vices for the design of novel interaction techniques (e.g., 
[41,52]). Such detailed information about the relation be-
tween people, devices and objects can enable new interac-
tions, such as large displays that react to the presence of peo-
ple approaching them, mobile phones that connect to each 

other when in close proximity to allow easy transfer of infor-
mation, or systems that can support ad hoc interactions with 
multiple devices as part of small group collaboration (e.g., 
[34,41]). In particular, previous work demonstrates that lev-
eraging the nuances of proximity, distance, orientation and 
social relations between people, devices and other innate ob-
jects in the environment can lead to better context-aware ap-
plications and systems [14]. There is also a need to support 
interactions in multi-device interactive spaces with diverse 
sensing modalities and mobile devices [15]. To build such 
applications, systems need a detailed understanding of the 
physical space and activities of users, but also the physical 
location of devices and objects in use by those users. More-
over, to enable broad adaptation, developers need supporting 
infrastructures [9] that provide computational representa-
tions of spaces (e.g., relations between devices and people) 
to enable new types of walk-up and use applications [33]. 

Building a model of the space around the user requires so-
phisticated tracking hardware to allow systems to seamlessly 
blend devices into one shared interaction space. Building 
spatial tracking tools is often done using expensive and inva-
sive tracking mechanisms that require specialized equip-
ment, on-body markers, or even radios in devices [33,52]. 
Recently, depth-sensing cameras have been proposed as a 
non-invasive tracking technology for interactive systems 
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Figure 1. EagleSense real time tracking of people’s location, 

postures and activities in interactive spaces. 
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[8,18] and toolkits [33,38]. Many new interaction techniques 
leverage depth-sensing cameras to detect users’ positions 
and gestures. Conventional use of depth cameras (such as 
[8,33,51]) rely on a front-facing setup that suffers from oc-
clusion if multiple users interact with each other simultane-
ously. Recent work [18,34] showed that top-view (bird’s-eye 
view) cameras can produce larger tracking areas, which ena-
ble tracking systems to support proxemics and cross-device 
interactions in interactive spaces, and most importantly while 
at the same time avoiding occlusion problems of front-facing 
cameras. However, beyond demonstrator systems, this ap-
proach is not well established or evaluated. 

In this paper, we propose a new approach to top-down track-
ing of people and devices during collocated interaction. Ea-
gleSense (Figure 1) is a real-time tracking infrastructure us-
ing top-view depth-sensors capable of detecting users’ posi-
tion and orientation, as well as recognizing postures and ac-
tivities, such as standing, sitting, pointing, using devices or 
reading paper documents. EagleSense provides a high per-
formance, robust and precise activity recognition algorithm 
that recognizes both human activities, as well as device con-
figurations, enabling a new range of interactive applications. 
It is a novel enabling technology designed to support build-
ing, designing and studying multi-device interactive spaces, 
body-centric spatial interactions and cross-device group in-
teractions. To facilitate rapid prototyping of such applica-
tions, EagleSense provides a high-level web-based interface 
to access and use the spatial models in new applications.  

We contribute a detailed description of our tracking and 
recognition pipeline, informed by the state-of-the-art com-
puter vision tracking techniques, as well as a rigorous testing 
procedure going beyond earlier top-view tracking ap-
proaches [19,30] and systems [18,34]. Our method achieves 
90.55% cross-subject activity recognition accuracy on a new 
dataset of 12 subjects. To demonstrate the capabilities and 
use of EagleSense, we present three use-case applications 
based on the RESTful tracking API. The EagleSense code, 
algorithms, dataset and tools are available as open source at 
https://github.com/cjw-charleswu/eaglesense. 

RELATED  WORK  
Our work is informed by (i) computer vision algorithms for 
human detection and tracking, (ii) machine learning models 
for human activity recognition, and (iii) interactive systems 
using top-view depth-sensing cameras. 

Human  detection  and  tracking  
HCI researchers used real-time human pose estimation (lo-
calization of skeleton joints) from single depth images [45] 
via commodity depth sensors such as the Microsoft Kinect 
[35] or Intel RealSense [22]. Li et al. [28] proposed a novel 
RFID-depth hybrid sensing approach for tracking both the 
identity and location of multiple people in groups. However, 
current commodity depth-sensing software (such as for the 
Microsoft Kinect [35]) does not provide the human skeleton 
joint positions when the camera is mounted at a top-down 
angle (used to minimize occlusions [34]).  

Early research with top-view cameras focused on techniques 
for tracking people’s position [20,42,47,50]. To address the 
lack of support for top-view human pose estimation for in-
teractive tabletops, Haubner et al. [16] suggested to adopt Ki-
nect’s skeleton training pipeline [45] with a new dataset, 
where the subjects would wear color suits that have a distinct 
color-coding for each body part. Migniot et al. [36] devel-
oped a top-view multi-person skeleton tracking system using 
a particle filter. Recent approaches to human pose estimation 
with deep convolutional networks [21,48,49] show signifi-
cant improvement on recognition in color images. 

Human  activity  recognition  
The availability of depth-sensing cameras has driven the re-
search of human activity recognition using depth data. The 
use of depth over color images mitigates issues around light-
ing conditions, cluttered backgrounds, shadows, and occlu-
sions [2]. However, conventional machine learning features 
used with RGB images for human activity recognition, such 
as Histogram of Oriented Gradients [7] and Space-Time In-
terest Points [27], are not discriminative in depth maps. Intu-
itively, the structure of skeleton joints can support identifica-
tion of a range of human actions and activities. Therefore, 
recent work on human activity recognition [40,53,58,60] 
proposed view-invariant features based on the human skele-
ton (see [45]), including one or more of the following: pair-
wise joints differences, joints orientations, surface normals, 
depth occupancy patterns, and histograms composed of these 
features. Aggarwal et al. [1] provide a comparison of features 
from 3D depth data for human activity recognition. 

This prior research contributed various datasets for human 
activity recognition, such as depth map sequences of game 
actions [29], color and depth images, along with skeleton 
joint positions, of daily activities and person-object interac-
tions [53] (in multiple scenes [39]), and person-person inter-
actions [57]. The number of participants in those datasets 
ranges from 10 to 30. Recent advances in deep learning and 
large-scale datasets (e.g., millions of samples and hundreds 
of classes) also improved the state-of-the-art human activity 
recognition of sports and actions from videos [24,46]. As 
those previous datasets are all captured by a front- or side-
view camera, we contribute a dataset for top-view tracking 
of people and devices, facilitating further development of 
tracking systems as well as easier evaluation and comparison. 

There is limited work on human activity recognition used 
with top-view cameras. Hu et al. [19] achieved moderate 
recognition accuracy on six different activities postures – 
standing, bending, sitting, pointing, stretching, and walking 
– with the mixtures-of-parts posture descriptor proposed by 
[62]. This setup requires a second depth-sensing camera to 
project the skeleton joint positions from the side-view coor-
dinate system to the top-view coordinate system. Lin et al. 
[30] extended the top-view person detector from [50] to rec-
ognize six different activities. 

Interactive  systems  using  top-­view  cameras  
Top-view tracking systems have previously been used to en-
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gage users in interactive games [4,26,31], to support interac-
tions around tabletops [18,55,56] and to enable cross-devices 
interactions [34,41]. Wilson and Benko’s LightSpace [56] 
slices 2D orthographic virtual camera planes through the uni-
fied 3D mesh (combining multiple top-view depth sensors) 
to facilitate recognition of human activities. DT-DT [18] is a 
top-view system that tracks people’s position and a set of 
gestures, recognizing human activities within a 10-frames in-
terval using 3D occupancy patterns of shape features [17]. 
They demonstrated the tracking system around a tabletop and 
a floor-projection interactive visualization, including a pre-
liminary testing of the system with six users and four ges-
tures. GroupTogether [34] is a top-view tracking system that 
recognizes the proxemics of devices and people, developed 
for cross-device content sharing (considering both micro-
mobility and people’s F-formations). Its hybrid tracking uses 
depth-data and radio signals trilateration for positioning peo-
ple and devices. HuddleLamp [41] uses a RGBD-hybrid 
sensing approach for detecting stationary phones and tablets 
on a table from a lamp shade-sized depth-sensing camera, by 
applying standard contour finding and depth thresholding 
techniques and leveraging low infrared reflectance. More re-
cently, DIRECT [59] proposes another novel depth-infrared 
sensing algorithm to improve finger and touch tracking on a 
flat table surface, consisting of infrared edge detection and 
iterative flood fills on the arm, hand, finger, and tips. 

Our work builds upon these earlier approaches and integrates 
computer vision techniques into our novel processing pipe-
line to provide a real-time top-view human activity recogni-
tion system. EagleSense reliably recognizes people’s posi-
tion and orientation, as well as key interaction activities, at 
fast framerates of 30 Hz, allowing real-time interaction. 

EAGLESENSE  SYSTEM  
EagleSense (Figure 1 and 2) is a top-view tracking system 
that combines depth and infrared data for human posture and 
activity recognition. It is an enabling tracking infrastructure 
that can be used, for example, by proxemic-aware [14] or 
cross-device systems [34,41] to detect and localize users and 
their activities, and recognize their uses of devices within an 
interactive space. In the following, we introduce the require-
ments for EagleSense, discuss the tracking system, and then 
guide through the key stages of the tracking pipeline. 

Requirements  
As outlined by Edwards et al. in the “Infrastructure Problem 
in HCI” [9], technical infrastructures are a core requirement 
in human interfaces that often directly influence and shape 
user experiences of technology and applications in user space. 
Therefore, to enable cross-device applications and interac-
tion techniques to make use of a spatial tracking systems, the 
system needs to support five central requirements: 

R1.  Non-invasive tracking: To provide a “walk-up and use” 
experience, the tracking infrastructure needs to be non-
invasive. This avoids the need for users to wear markers, 
tags or other equipment to be recognized by the system. 
Moreover, non-invasive tracking enables users to walk  

in and out of the space to opt in or out of the entire sys-
tem.  

R2.  Off-the-shelf technology: By using off-the-shelf and 
affordable technology, the tracking infrastructure wel-
comes new developers, and integrates with existing tool-
chains, frameworks and design practices. Moreover, we 
envision that this technology could be further developed, 
refined and distributed to enable a broader audience to 
make use of the tracking infrastructure. 

R3.  Reliable real-time tracking: To provide a seamless in-
teraction experience, the system needs to provide real-
time tracking data. Delays in update rates for activity 
recognition and device detection should be minimized to 
maintain a fluent flow of tracking data. Such reliability 
in detection and timing consistency is required for oper-
ation consistency in user space. 

R4.  High-level access to spatial data: To enable cross-de-
vice system developers to design, deploy and test new 
systems, interaction techniques and applications – with-
out the need for them to understand, use and configure 
low level tracking data – the tracking infrastructure 
should provide high-level access to real-time tracking 
data and update mechanisms. 

R5.  Configurability for activities: To allow for extendibil-
ity of the tracking infrastructure for scenarios and re-
quirements beyond the standard set, it should allow for 
flexible definition, configuration and training of new ac-
tivity recognition algorithms. 

Tracking  Overview  and  Technical  Setup  
EagleSense uses a ceiling-mounted down-facing depth cam-
era at height of 264cm above the floor, allowing the tracking 
area of approximately 240cm by 170cm (Figure 2). The sys-
tem detects people from the shape of contours in the depth 
frame after background subtraction, and creates a depth and 
infrared silhouette for each detected person (Figure 3AB). 
EagleSense segments the depth silhouette into three layers 
(Figure 3C), where silhouette-extremities features (Figure 
3D-E) are extracted for posture and activity recognition. A 

 
Figure 2. EagleSense physical setup. 
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gradient tree boosting method is used to classify the six dif-
ferent postures and activities. The EagleSense tracking pipe-
line consists of two phases: PHASE A for real-time segmen-
tation of individual body layers, which is then used for 
PHASE B, the posture and activity recognition. The system 
was implemented in Visual C++ with three programming li-
braries: Microsoft Kinect SDK, OpenCV and XGBoost. The 
system runs at 30 frames per second on a 2.3GHz CPU and 
8.0GB RAM computer. The machine learning model was 
trained on a single GTX660 2GB GPU. All the tests reported 
in this paper were done on this setup. 

PHASE  A:  Top-­View  Depth-­Sensing  Tracking  
The first phase of the EagleSense tracking pipeline is the 
real-time segmentation of a tracked person and their body 
parts. EagleSense localizes the head position and orientation, 
and produces a three-layers segmentation (Figure 3C).  

Step 1 – Depth and infrared streams. Using the Kinect, the 
depth and infrared maps are acquired as 8-bit depth images 
of 512 by 424 pixels. The original 10-bit depth map is nor-
malized to 8-bit, whereas the last 8 bits of the original 16-bit 
infrared map are removed. The latter procedure creates high 
contrast on the pixels of low infrared reflectance, which are 
used for the detection of mobile devices, as done in [41]. 

Step 2 – Human detection. EagleSense models the back-
ground from the first 120 depth frames using a Gaussian 
Mixture Models algorithm [64,65]. The learning rate of the 
background model is set to zero after the initial background 
frames are processed. When the scene is empty (i.e. no per-
son detected) for 300 consecutive frames to ensure that the 
system does not mistakenly treat actual users as background, 
the background model is reset to the automatic learning rate 
until a detected person enters the field of view again. This 
simple mechanism allows the tracking system to run contin-
uously without recalibration. To reduce depth-sensing noise 
from the camera and background subtraction, we smooth the 
foreground depth map using a 5 by 5 median filter, a com-
mon technique employed by previous work [44,50]. We keep 
the infrared map unfiltered to retain as much sparse infrared 
pixels on devices (which the system attempts to recognize) 
as possible, especially on small devices like mobile phones. 
In practice, the filtered depth map contains only actual users’ 
contours. In rare occasions, the image may contain small ar-
tefacts, hence the system filters out small components, as 
done in [34], that have a size of less than the area of a circle 
with a radius of 30cm. 

Step 3 – Human tracking. A person’s center of mass on the 
contour, or the body center, is continuously tracked as soon 
as they are detected. However, depth-sensing cameras usu-
ally fail to estimate depths close by the field of view periph-
eral. This results in unreliable tracking when the person is 
near the tracking area boundary. In such cases, it is difficult 
to determine the person's head center position and orienta-
tion; for example, when people walking in and out of the 
tracking area. Therefore, EagleSense tracks people based on 
their body center position. To provide accurate tracking data,  

it defines an inner tracking area, or the activity zone, where 
it tracks other information about the users – their head posi-
tion and orientation and their activity. In the current setup, 
the activity zone is defined as 15cm inward from the depth 
map dimensions, in which the person’s head is mostly visible 
(the value is determined based on empirical observation of 
the evaluation dataset). A person is inside the activity zone if 
the highest point on the contour (minimum depth value) is 
within the activity zone bounding box. 

Step 4 – Human depth and infrared silhouettes. Motivated 
by silhouette-based human activity recognition [5,29,61,63], 
which omits human pose estimation, we extend the use of 
silhouettes to human posture and activity recognition with a 
top-view depth-sensing camera. EagleSense extracts the per-
son’s depth and infrared silhouettes from the current frame 
using a bounding rectangle around their contour. We accen-
tuate the dark pixels (with low infrared reflectance) on the 
infrared silhouette, by setting all white pixels (high infrared 
reflectance) to black then applying binary thresholding (Fig-
ure 3B and 3F). The detection of mobile devices from the 
infrared silhouette will be explained shortly. To enable real-
time tracking performance, the depth and infrared silhouettes 
are downsampled to 32 by 32 pixels. 

Step 5 – Body segmentation. Next, EagleSense segments 
the depth silhouette into three layers (Figure 3c and 4), in-
formed by the methods of previous top-view tracking sys-
tems [18,30,34]. Related to our tracking approach, Lin et al. 
[30] proposed a model for six different activities. They 
threshold the person’s depth silhouette at fixed intervals, and 
retain one contour from the first layer (head) and at most two 
contours from each of the other two layers (shoulder and 
body). The sequence of all contours centroid positions is 
aligned using Dynamic Time Warping, and then used as in-
put into a Support Vector Machine classifier which achieved 

 
Figure 3. Preprocessing of the depth (A) and infrared (B) 
silhouettes into three layers (C), layer (D) and body (E) 

extremities, and low infrared reflectance regions (F). 

Camera-based Tracking CHI 2017, May 6–11, 2017, Denver, CO, USA

3932



an average 98.15% accuracy on three random cross-subject 
tests (see technical evaluation). However, centroid positions 
are not ideal features for tracking and recognition algorithms, 
because some postures (e.g., standing and pointing) have 
similar centroids positions (Figure 4). Furthermore, their ap-
proach cannot distinguish between holding different devices 
and objects. We will address these limitations in Phase B. 

In contrast to earlier work (e.g., [30]), EagleSense recognizes 
postures and activities from single images for achieving real-
time performance, and we evaluate the methodology through 
a complete cross-subject test on a dataset consisting of more 
participants and samples. EagleSense improves upon earlier 
approaches on body segmentation for top-view depth maps. 
Instead of using fixed depth thresholds [16,30,34], we em-
ployed a K-means clustering algorithm to obtain the head 
and two body layers. The K-means clustering algorithm is 
the running time bottleneck of the EagleSense tracking pipe-
line, which we addressed in Step 4 by downsampling the in-
put depth silhouette. In the implementation, K (number of 
clusters) and I (number of iterations) are both set to 5. We 
want to obtain three body parts and ignore the background (4 
clusters). However, we found that the depth differences be-
tween the head and shoulder could be very small when track-
ing from above and after downsampling, especially when the 
person is far away from the depth-sensing camera. In such 
scenarios, the K-means clustering algorithm would produce 
undesirable results, for example, clustering the head and 
shoulder into one layer when the person is looking down at 
their device. Therefore, we set K to 5 and ignore the last clus-
ter (usually the feet or the silhouette outline). We also join 
components other than the head with the second layer. 

Step 6 – Head position and orientation. To estimate the 
head position and orientation, EagleSense fits an ellipse to 
the largest contour in the first segmented layer (head). Since 
the head contour in the downsampled silhouette is too small 
for a precise head orientation estimation, the head contour is 
upsampled with respect to the original depth silhouette di-
mensions. The head position is the center of the fitted ellipse, 
and the head orientation is the angle of the ellipse major axis 
(Figure 4), as done in [18,34]. In our implementation, we use 
the following method for tracking the human head orienta-
tion. We assume that when users enter the field of view, they 
are walking forward-facing into the scene tracked by the 
depth-sensing camera.  This enables the system to resolve the 
initial head orientation from 180-degree ambiguity, and the 
head orientation in succeeding frames is subsequently up-
dated. EagleSense captures and processes depth frames in 
real-time, so it sees any turning motion of a person’s head. 

The orientation is transformed to a range between 0 and 360 
degrees clockwise from the positive x-axis from the camera 
field of view. 

PHASE  B:  Posture  and  Activity  Recognition  
In the second phase of our tracking pipeline, we describe how 
we recognize postures and activities from the three-layer 
body segmentation. Our results show that despite discarding 
the human pose estimation requirement (as studied by related 
work [21,45,48,49]), EagleSense can achieve high recogni-
tion accuracy with features based on extremities, or extreme 
points, on the depth and infrared silhouettes. 

First, we provide a rationale for the chosen extremities from 
a simple human skeleton structure (Figure 5). The three lay-
ers should contain the head, upper-body, and lower-body, re-
spectively. However, much of the human body is self-oc-
cluded in the top-down view to varying extent (e.g., see pos-
tures in Figure 4). Thus, we want to recognize the overall 
body or layer structure, rather than the local features [30]. 
Specifically, we extract patterns from the extremities which 
shape the corresponding posture or activity. We also avoid 
any assumptions about the relative positions of the shoulder, 
arms, and body [18,34]. Our current approach can recognize 
more postures and activities than those previously proposed, 
as captured by the dataset, including the use of devices (i.e. 
phones and tablets) and pointing gesture at different heights 
and orientations. 

Step 7 – Extracting 3D interest points and 2D planes. 
Next, we extract several 3D interest points and two-dimen-
sional planes from the three segmented body layers: 

•   Layer centers and extremities (3 centers and 6 ex-
tremities).  EagleSense finds the mass center and the 
furthest two points (Figure 6, row 1) in each layer; these 
positions reveal the overall layer structure, position and 
orientation. 

•   Layer contours (6 contours). Each segmented layer 
consists of one or more contours (disconnected compo-
nents) because of self-occlusion. To connect the body 
structure, we find three largest contours (with more 
than 5 points) in the 2nd and 3rd layer. 

•   Body extremities (5 extremities). Lastly, it finds the 
convex hull and convexity defects of the depth silhou-
ette contour (Figure 6, row 2). Since we are most inter-
ested in locations where people hold mobile devices or 

 
Figure 4. Body segmentation by depth for standing, sitting, 

pointing, using phone, using tablet, and reading paper (from 
left to right), and the estimated head orientation. 

 
Figure 5. Human skeleton in three layers (front-view). 
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other objects (the arm is usually extended from the top-
view), we sample at most five convexity defects (in-
formed by the star-figure human silhouette model 
[5,63]). First, we remove points that are within the head 
layer. Then, we iteratively remove a point from pairs of 
convexity defects with the smallest Euclidean distance, 
until only five convexity defects remain. The convexity 
defects may fall outside of the actual silhouette contour 
(as returned by the convex hull algorithm), hence we 
correct their position to the nearest pixel on the contour 
within a 5 by 5 window. They are the final body ex-
tremities (Figure 6, row 3). 

Step 8 – Calculating Feature Vector. Our algorithm con-
siders the following 72 values in the feature vector: 

•   Layer areas (3 features). The ratio of nonzero pixels 
in each   layer with respect to the total silhouette area.  

•   Layer contour counts (2 features).  The number of 
contours in the 2nd and 3rd layer. 

•   Layer maximal distances and areas (15 features). 
The maximal 2D Euclidean distance in each layer. Also, 
the maximal 2D Euclidean distance and area in each of 
the three largest contours in the 2nd and 3rd layer. 

•   Intra-layer positions (27 features). The relative 3D 
positions between the center and the two extremities in 
each layer. Also, the relative 3D position between the 
two extremities in each layer. 

•   Inter-layer positions (18 features). For each of three 
largest contours in the 2nd layer, the relative 3D posi-
tions between the contour center and the 1st and 3rd 
layer center. 

•   Body extremities (1 feature). The number of body ex-
tremities. 

•   Infrared of devices (6 features). To detect mobile de-
vices from the infrared silhouette, we calculate the area 
of the largest contour inside a 16 by 16 (half of the sil-
houette size) region of interest centered at each body 
extremity. In addition, we also calculate the area of the 
largest contour in all regions of interests combined (us-
ing all ROIs as a single mask). 

Step 9 – Machine learning algorithm. In general, the task 
of human activity recognition is about recognizing dynamic 
actions, or a sequence of actions occurred within a time in-
terval, for example the motion of standing up as opposed to 
the standing posture. Some work modelled the temporal dy-
namics of human actions using graphical models such as 
Gaussian Mixture Model, Dynamic Time Warping, and dis-
crete Hidden Markov Model [29,30,58]. Some classified hu-
man activity sequences with Naïve Bayes Nearest-Neighbor 
and Support Vector Machine [53,60]. Deep learning commu-
nity used Convolutional Neural Network to classify human 
activity videos at large-scale [24,46]. EagleSense does not 
model dynamic actions, instead, it recognizes postures and 
activities from single images (e.g., whether the person is cur-
rently using a tablet), because it is a supporting tracking in-
frastructure for ad-hoc interactions that provides real-time 

information about people’s position, orientation, their pos-
ture and use of mobile devices. After a comparison of ma-
chine learning algorithms, we chose the tree boosting system 
XGBoost [6] for posture and activity classification, because 
it provides the best performance and speed during both train-
ing and testing, and it leverages our proposed weak features. 

For each incoming frame from the depth-sensing camera in 
real-time, EagleSense classifies each person into a posture or 
activity category, by using the features as inputs into the gra-
dient boosting tree classifier (trained on our entire dataset). 
Although training was done in XGBoost’s Python package, 
the C++ tracking application can use the classifier via the 
Python C API. 

Step 10 – Physical setup considerations. For our setup, the 
average processing time on each image in the dataset (con-
sidering only images with a person tracked inside the activity 
zone) is 11.16msec (std=1.40msec), including an average 
processing time of 2.12msec (std=0.41msec) per person 
(from step 3 to the step 8). Thus, the EagleSense system 
scales linearly with the number of people tracked. The aver-
age processing time required to predict a posture or activity 
using our classifier is 0.24msec (std=1.79msec); further 
speedup is possible with parallel threads. The system can re-
liably track up to four people (and more in seated positions) 
with enough room for interactions at 30 fps in our physically 
constrained testing environment. 

The Kinect v2 camera can sense depth from a maximum dis-
tance of 8 meters, although the data starts to degrade at 4.5 
meters [35]. For top-view tracking we recommend to place 
the camera at least 2.5-3.0m above the ground floor to allow 
sufficient effective tracking area (better at 3.0-3.5m). We ex-
pect our method to degrade gradually as the height of the 
sensor increases, because lower reliability of the depth-sens-
ing data will disrupt body segmentation in Step 5 as well as 

 
Figure 6. Preprocessing of the silhouettes for sitting, pointing, 
using phone, using tablet, reading paper (from left to right). 
First rows are layers extremities, second and third rows are 
unfiltered and filtered body extermities (convexity defects), 

and last rows are infrared ROIs. 
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the detection of device infrareds in Step 8. On the other hand, 
mounting the camera higher increases the tracking area, 
hence the visibility of people and devices. We expect the sys-
tem to operate well in environments suitable for time-of-
flight (TOF) cameras (e.g., usually indoor environments). 
Previous research (e.g., [10,11,37]) suggests algorithms for 
resolving the multipath interference problem (from multiple 
reflections) in TOF cameras including Kinect v2 sensors.  

Our current tracking and recognition pipeline assumes that 
the camera is placed at a top-down position, where the cam-
era is closer to people’s head and to the feet, allowing the 
body to be segmented by depth. This design decision was 
made to best minimize occlusions such as one obstructing 
another in the camera’s field of view. In addition, the system 
assumes that people hold objects at some distance from the 
body; it would potentially fail to detect mobile devices if they 
are held at closer to a person’s body. 

EVALUATION  
To evaluate the performance and reliability of our tracking 
algorithm, we conducted a technical evaluation of the Eagle-
Sense real-time tracking system. 

Study  Design  and  Tracking  Dataset  
We recruited 12 participants (5 male and 7 female university 
graduate students and staff, between 150 to 186 cm tall and 
21 to 34 years old) to perform six different postures and ac-
tivities: standing, sitting, pointing, using phone, using tablet, 
and reading paper. These specific postures and activities re-
flect frequent occurrences in everyday tasks [3] including 
multi-device uses [23]. Participants used their own mobile 
phones (with displays ranging from 2.4 to 5.0 inches) while 
performing the “using phone” activity (11 of the devices 
were smart phones, one was a feature phone). The partici-
pants used the same 9.7-inch tablet. 

Moving beyond previous tracking evaluations, where partic-
ipants were asked to perform repeated, short sequences of 
activities [29,30,39,40,53], we captured these activities in 
one complete recording session for each participant. Each ac-
tivity lasted one minute (one session ~5 minutes), allowing 
us to better understand the system limitations in realistic sce-
narios. First, the participant walked randomly in any direc-
tion, occasionally walking in and out of the tracking area. 
Second, the participant picked up and read a paper about the 
current work. Third, the participants used their own mobile 
phones freely, and fourth, they played a game on the tablet. 
They could stand at any position and orientation during these 
activities (and they moved frequently in between different 
positions). Fifth, the participants solved a quiz by pointing 
gestures at a display while seating in front of a large screen. 
Last, they watched a short video, also in seated position. 

A total of 84992 depth and infrared frames (512 by 424 pix-
els) were collected and labeled by the researchers (represent-
ing ~45 minutes of tracking recordings), excluding the initial 
background frames. An image was labelled as empty if the 
person's head is more than half-occluded or if they are en-
tirely out of sight (93.84% were non-empty images). We 

used 77024 images (90.61%) in our evaluation, which con-
sist of non-emptied images where the detected person is 
within the activity zone. To label and annotate the dataset for 
the testing of machine learning algorithms, we developed a 
web-based ground-truth image labeling application (which is 
part of our EagleSense open-source release and can be used 
by other researchers for further labeling of training data). The 
tool enables fast annotation of a large dataset by facilitating 
the tagging of the same label to multiple images at once; our 
entire dataset was labelled in less than an hour. 

We performed three different tests to find out the recognition 
accuracy following the EagleSense tracking pipeline, using 
the same evaluation strategy employed by previous work 
[29,40,53]. These include (i) 1/3 samples test, (ii) 2/3 sam-
ples test, and (iii) cross-subject test. The 1/3 and 2/3 samples 
tests use one and two thirds of the dataset, respectively, for 
training and the rest for testing. Under these two tests, the 
training set is stratified-sampled from each activity category 
from each subject. The cross-subject test uses all the samples 
from half of the subjects in training, and the other half in test-
ing. Our initial cross-subject test used samples from odd-
numbered subjects in training and even-numbered subjects 
in testing. The average height of the subjects in the training 
and testing sets is 169.17cm and 168.5cm, respectively. The 
parameters of the tree boosting classifier were selected using 
5-fold cross-validation. For example, the cross-subject test 
classifier consisted of 79 boosting trees with a maximum 
depth of 6 per tree. We conducted a complete cross-subject 
test that evaluated all possible combinations of cross-subject 
splits, as done in [53]. In our case, there are 12 (number of 
participants) choose 6 combinations of cross-subject tests 
(924 tests in total).  

Results    
Our method achieved 98.47% accuracy on the 1/3 samples 
test, 98.97% accuracy on the 2/3 samples test, 90.55% accu-
racy on the initial cross-subject test (Figure 7 left), and 
89.48% accuracy on the complete cross-subject test (Figure 
7 right). The result shows that the EagleSense tracking and 
recognition pipeline is generally robust across different sub-
jects (>90% accuracy) in all posture and activity categories 
except “using phone” (63.82% accuracy). In this category, 
the classifier achieved only 43.92% on Subject 10 and poorly 
on Subject 2, 6, and 12 (58.60%, 59.85%, and 54.94%). It 
mostly misclassified “using phone” as “standing”. 

The gradient tree boosting classifier considers the infrared 
and area features (infrared of devices and layer areas) to be 
most discriminative (based on feature importance in the clas-
sifier). The number of nonzero pixels on the largest contour 
in all infrared ROIs combined help distinguish between hold-
ing different objects – phone, tablet, or paper. Tablets gener-
ally have large undetectable depth values (low infrared re-
flectance) on their surfaces, as discussed in [41], which cor-
responds to the values this feature extracts. In comparison, 
phones have less amount of low infrared reflectance, and pa-
per almost none. The layer area ratio is also a good indicator 
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of the current posture. Since the depth silhouettes are nor-
malized to a fixed size, when a person is pointing, the relative 
size of the head becomes much smaller compared to the rest 
of the body. When a person is using a device, the second 
layer is usually the shoulder (smaller in size), instead of the 
front body (larger in size) when the person is standing.  

We expected infrared-based features to have a strong influ-
ence on the recognition accuracy of activities related to hold-
ing an object: “using phone”, “using tablet”, and “reading 
paper”. An experiment of the initial cross-subject test using 
all but infrared features (infrared of devices) showed that in-
frared features contributed considerably to the recognition of 
tablets (+33.12%) but only marginally to the recognition of 
phones (+10.27%), while the recognition accuracy of all 
other activities remained roughly the same (Figure 8).  

Discussion  of  Evaluation  Results  
The EagleSense tracking and recognition pipeline achieved 
very high accuracy on both the 1/3 and 2/3 samples tests, as 
do previous work that employed the same evaluation proce-
dure [29,40,53]. This is because the classifier was trained on 
almost all variations of the same classes that were sampled 

from all subjects. However, these results are not indicative 
of the out-of-sample performance, because they do not ac-
count for samples from unseen subjects, which would occur 
more frequently for in-the-wild deployment. Cross-subject 
tests mitigate this issue. The results between the initial and 
complete cross-subject tests very similar (Figure 7), except 

in the recognition of “using mobile 
phone” and “using tablet”, which can 
be attributed largely to the differ-
ences between how people use de-
vices. Although the method of using 
low infrared reflectance pixels to rec-
ognize these two objects in free mo-
tion is rudimentary, on average, the 
system still has good recognition re-
sults (mobile phone: 71.59%, tablet: 
83.30%; Figure 7 right). 

Compared to earlier work (e.g., Hud-
dleLamp [41], which recognizes the 
position of phones and tablets on a 

flat surface), EagleSense attempts to recognize devices in a 
larger space where more different orientations are possible. 
However, mobile phones are relatively small to be seg-
mented precisely from downsampled silhouettes. In our da-
taset, participants held their mobile phones with either one or 
two hands. Some held their phones closer to their body, while 
some held their phones further away. Overall, the dataset 
contains various snapshots of mobile phone usage at multiple 
locations and orientations. Furthermore, each subject used a 
different mobile phone with different display and frame 
sizes, causing different amounts of infrareds to be reflected 
and captured by the depth-sensing system. Some subjects’ 
clothing or hair also reflected only small amounts of infrared 
light, hence they interfered with the detection of low infrared 
pixels and weakened the recognition of mobile devices. In 
summary, it is difficult to detect the presence of mobile 
phones simply by learning a pattern about the number of low 
infrared reflectance pixels (in top-view interactive spaces), 
as evidenced by the only marginal increase in the recognition 
accuracy of mobile phones after infrared features are in-
cluded (Figure 8). However, this technique works well for 
recognizing tablets in 3D space, as large surfaces of low in-
frared reflectance are still possible to recognize after 
downsampling.  

APPLICATIONS  USING  EAGLESENSE  API  
EagleSense provides a web-based API for easy access to the 
tracking data, facilitating the development of ubiquitous 
computing applications running on distributed devices. The 
RESTful API for EagleSense can send the tracking data to 
an IP address as a JSON string via HTTP POST. This allows 
the easy integration of the tracking data into new web-based 
ubicomp applications. The JSON data package (Figure 9, 
lines 8-11) includes an ID number of the tracked person, X/Y 
coordinates (registered to a zero calibration point in the 
tracking space), height (the vertical distance from the depth 
camera), head orientation angle, and the currently detected 
activity. This live streaming JSON data enables developers 
to design and implement new applications and systems with-
out any need to access low level tracking code.  

To implement a new application using the live tracking data, 
developers need to include only a few lines of code in their 

 
Figure 8. Activity recognition accuracy on the initial cross 

subject test, with and without using infrared features. 

   
Figure 7. Activity recognition accuracy on the initial (left) and complete (right) cross-

subject tests. X-axis: predicted. Y-axis: real. 
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JavaScript web applications (we include an example REST-
ful server and a JavaScript library in our open-source pack-
age to facilitate prototyping applications). First, the applica-
tion needs to establish a WebSocket connection with the 
server (Figure 9, lines 0-3). The EagleSense server then 
streams the real-time tracking data to the front-end applica-
tions. The application handles the data stream through four 
custom callback functions (Figure 9, lines 4-7).  

To demonstrate the tracking capability of the EagleSense 
system and the application of the API, we show partial code 
snippets for three small example applications (Figure 9, lines 
12-32): 

1.   Visualizing people’s walking trajectories: For our first 
example application, we created a visualization of peo-
ple’s walking trajectory in the environment. Such a visu-
alization can support quantitative analysis of interactive 
systems (e.g., large public displays) by revealing peo-
ple’s movement patterns and multi-device use cases 
when interacting with the system. To implement this vis-
ualization application, the JavaScript code simply needs 
to iterate over the data structure containing the currently 
tracked people (Fig. 9, line 12) and can then use the X 
and Y coordinates of each person to visualize them on 
screen (our example uses a decaying algorithm over the 
last 1000 frames). The trajectories can then be visualized 
on the JavaScript canvas (shown in Figure 10, in two dif-
ferent hexagon grid sizes). A possible extension of this 
application could visualize other characteristics of peo-
ple’s interaction, such as people’s orientation and/or use 
of devices. 

 
Figure 10. Visualising walking trajectories. 

2.   Opting-in and out of interactions with a large display: 
In our second application, we developed an example il-
lustrating techniques for opt-in and opt-out gestures al-
lowing a person to begin/end the interaction with an in-
teractive game shown on a large display. After perform-
ing the pointing gesture at the display (Figure 11), the 
game begins and a person can control the game through 
body movements. If the user turns away from the display 
(based on EagleSense’s estimation of their head and body 
orientation), the game is paused and the user is implicitly 
opting-out of the interaction. This is implemented by 
monitoring the orientation of all currently tracked people 
(Fig. 9, lines 15-21). 

  
Figure 11. Using implicit and explicit gestures for opting-in 

and opting-out from interaction with wall display. 

3.   Cross-device interactions and interactions based on 
people’s formations: our last example is informed by 
Greenberg et al.’s notion of proxemics interactions [13], 
and applications of cross-device interactions based on 
people’s proximity and orientation [34]. It interprets the 
location of both currently tracked people and devices (Fig 
9, lines 22-26) to identify which person is using their mo-
bile device or tablet in close proximity to the large screen 
(Figure 12) in order to facilitate content transfer between 
mobiles and the large screen (Fig. 9, lines 27-30). 

   
Figure 12. Recognizing two people and their devices when in 
front of large screen (left to right: space, depth image, real-

time tracking of EagleSense). 

While these are intended as starting points for applications, 
the JavaScript code snippets illustrate how the web-based 
API of EagleSense makes the real-time tracking data easily 

 
Figure 9. Partial source code for prototype applications, 

implemented with the web-based EagleSense API.  
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accessible for ubicomp applications, proxemic interactions 
or cross-device interactions.  

EagleSense RESTful API focuses on providing real-time 
tracking data of devices, people, and activities, to enable de-
velopers and researchers to build new applications. How-
ever, inherent to the availability of REST clients, the infra-
structure can easily be integrated with any tool, application 
or programming environment. For example, it enriches the 
space of depth-sensing systems for cross-device applications 
including XDKinect [38], HuddleLamp [41], GroupTogether 
[34]. By combining application models like Webstrates [25] 
or Connichiwa [43] with EagleSense, developers can quickly 
start crafting new spatially-aware multi-device interfaces. In 
future work, we aim to integrate a basic information and co-
ordination mechanism into the core infrastructure to enable 
RESTful communication exchange between detected de-
vices. Similar strategies, such as the QR code pairing mech-
anism used in HuddleLamp [41], can be used to pair recog-
nized devices to the room-based information system. Fur-
ther, we want to leverage multi-device support to provide 
proxemics and cross-device interactions over large, extended 
tracking spaces. 

DISCUSSION  
EagleSense contributes to the development of enabling infra-
structures for ad-hoc, multi-device interactions in ubicomp 
ecologies. EagleSense supports recognition of different mo-
bile devices (i.e. phones and tablets), extending previous 
work on proxemics [33] and cross-device interactions 
[34,41], and the platform provides applications and tools to 
extend the infrastructure’s tracking capabilities. We now dis-
cuss strategies to further advance the real-time tracking pro-
vided through the EagleSense platform.  

Dataset  
In our dataset, we only captured a small subset of possible 
scenarios of the six postures and activities (for example, the 
subjects only performed the pointing gesture in seated posi-
tion). There are fewer random actions in the dataset than to 
be expected in real-world deployments, but during training 
we included images that did not fit into any posture or activ-
ity category, such as the bending down/standing up motion, 
scratching, and attending to other objects (e.g., watch). Most 
subjects stood still while holding various devices and ob-
jects, which is also often the case in real-life scenarios, but 
this limits the range of body orientations captured during ac-
tivities incorporating the use of these form factors. To ensure 
that any incremental improvement to the EagleSense infra-
structure is also validated, future work will also build to-
wards a heterogeneous testing dataset. 

EagleSense  System  
Earlier in Step 10 we summarize the considerations for our 
setup. Although more validations are needed to assess the ac-
curacy and effectiveness of the system in multiple environ-
ments in the wild, we expect, based on our initial dataset, that 
the methodology would generalize to new situations. In fu-
ture work, we propose enriching the model by gathering 

more in situ data with depth-sensing cameras mounted at dif-
ferent positions and heights. We envision an iterative devel-
opment cycle for EagleSense where infrastructure improve-
ment would progress with interaction techniques research us-
ing this system. We provide tools to enable future collection 
and labelling of datasets, and for future work we are inter-
ested in providing an interactive interface for training ma-
chine learning models for the EagleSense infrastructure.  

Recognition  Pipeline  
The EagleSense recognition pipeline can be improved by 
first performing an orientation normalization [53,54] on the 
human silhouette. The recognition algorithm currently does 
not process any color images, but the system could incorpo-
rate color data to enable more robust detection of mobile de-
vices and other objects in the environment (e.g., interactive 
surfaces), for example using convolutional neural networks. 
Furthermore, the dataset only includes activities performed 
by single subjects. Although from these individual activities, 
group patterns and configurations can easily be detected in 
application space, we are interested in including tracking 
methods for automatically detecting interactions between 
multiple people or more nuanced cross-device interactions 
(e.g., group formations or micro-mobility [34]). 

Tracking  Space  
The EagleSense infrastructure is currently only evaluated 
with a single depth-sensing camera. However, since it readily 
provides real-time tracking of users, devices, and activities, 
we expect it to become a part of a larger tracking ecosystem 
consisting of multiple cameras and sensors. For example, this 
could advance strategies such as those in the Gestures Eve-
rywhere framework [12] which integrates sensing across 
multiple spaces to provide both low- and high-level tracking 
information about the users and groups. A generic and ubiq-
uitous infrastructure for ad-hoc interactions, by combining 
EagleSense and other space models (e.g., [32,52]), can ena-
ble visualizations of interactive spaces as well as opting-in 
and opting-out interaction techniques at scale. 

CONCLUSION  
We presented EagleSense, a novel real-time tracking infra-
structure for interactive spaces leveraging top-view depth-
sensing cameras. EagleSense is an enabling technology de-
signed to support building, designing and studying interac-
tive spaces and cross-device group interactions. We also pro-
vide a new public dataset that enables researchers to empiri-
cally compare and study tracking algorithms for ad hoc col-
located interactions in interactive spaces. The EagleSense 
system, the RESTful API, the testing dataset and accompa-
nying tools support the development of spatially-aware 
multi-device applications are available as open source: 
https://github.com/cjw-charleswu/eaglesense. 
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